The Problem

Nothing is more important than your health

Read More
Read Less

Health is our most precious asset, and life scientists help protect it. Thanks to public health and pharmaceutical breakthroughs, life expectancy has doubled since 1900. Today, we take treatments like antibiotics, vaccines, insulin, and chemotherapy for granted. But they all took effort by thousands of scientists over decades to research and develop.

Life science research productivity is declining

Read More
Read Less

Preclinical research waste delays new treatments

Read More
Read Less

Reagents are a critical part of the problem

Read More
Read Less

Our Solution

We’ve taught a computer to read and think like a biologist

At BenchSci, this problem wasn't theoretical. Our founder, Tom Leung, experienced it first-hand in 2015 while researching cancer. An inappropriate antibody caused him to lose rare patient samples. Could machine learning prevent this in future? And help him choose the right antibodies? He contacted machine learning and data experts at the University of Toronto to find out. These experts, David Q. Chen and Elvis Wianda, joined him to solve the problem. Our fourth cofounder, Liran Belenzon, met the team at the Creative Destruction Lab. Together, they built, tested, and validated a solution to preclinical research waste. The solution used advances in deep learning to teach a computer how to read and think like a PhD biologist.


Antibody selection was the first problem we solved

BenchSci launched in July 2017 with our first application, AI-Assisted Antibody Selection. It helped scientists select the appropriate antibodies faster, reducing experimental failure. How? First, we collect relevant open- and closed-access scientific papers and product catalogs. Second, we extract relevant data points from them with proprietary machine learning models. Third, we build relationships between the data points with proprietary bioinformatics ontologies. Finally, we make the results searchable in an intuitive interface.

We power research at the world’s biggest institutions

The response to AI-Assisted Antibody Selection exceeded our loftiest ambitions. Within two years, more than 3,600 research institutions and 15 of the top 20 pharma companies used it. More than 31,000 scientists began relying on BenchSci for their experiments. Based on this response, and the impact of our work, we earned the trust of investors. This includes Gradient Ventures, Google's AI fund.


Our next step: All reagents, model systems, and beyond

Today, we're building on our success with antibodies to address other critical reagentsincluding recombinant proteins, siRNAs, and CRISPR tools—as well as model systems such as animal models and cell lines. We're also developing other machine learning-powered applications to reduce preclinical research waste. In everything we do, we're guided by our mission and hope for the future. By helping scientists be more successful, we can improve R&D productivity. And that means continued good health for all of us.

Want to be part of our story?

Careers at BenchSci